Пятница, 19.10.2018, 16:06
Приветствую Вас Гость | RSS

Ищем ИКС

Каталог статей

Главная » Статьи » Статьи

Из истории математики

История возникновения математики


Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом, пальцы рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность. Дальнейшее развитие математики началось примерно 3000 лет до н.э. благодаря вавилонянам и египтянам.
Предпосылки для превращения математики в теоретическую науку, впервые возникли в Древней Греции. Важную роль в формировании древнегреческой ма-тематики сыграла пифагорейская школа. Для пифагорийцев любое число представляло собой нечто большее, чем количественную величину. Например, число 2 согласно их воззрению означало различие и потому отождествлялось с мнени-ем. Четверка представляла справедливость, так как это первое число, равное произведению двух одинаковых множителей. Пифагорийцы также открыли, что сумма некоторых пар квадратных чисел есть снова квадратное число. Например, сумма 9 и 16 равна 25, а сумма 25 и 144 равна 169. Такие тройки чисел, как 3, 4 и 5 или 5, 12 и 13, называются пифагоровыми числами. Они имеют геометрическую интерпретацию: если два числа из тройки приравнять длинам катетов прямоугольного треугольника, то третье число будет равно длине его гипотенузы. Такая интерпретация, по-видимому, привела пифагорийцев к осознанию более общего факта, известного ныне под названием теоремы Пифагора, согласно которой в любом прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Однако может возникнуть вопрос: почему, исследуя, когда и как возникла математика как наука, мы обращаемся к древнегреческим мыслителям, в то время как уже до греков, в Вавилоне и Египте?
Действительно, математика возникла на Древнем Востоке, по-видимому, задолго до греков. Но особенностью древнеегипетской и вавилонской математики было отсутствие в ней единой системы доказательств, которая впервые появляется именно у греков. "Большое различие между греческой и древневосточной наукой, состоит именно в том, что греческая математика представляет собой систему знаний, искусно построенную с помощью дедуктивного метода, в то время как древневосточные тексты математического содержания содержат только интересные инструкции, рецепты и зачастую примеры того, как надо решать определенную задачу". Древневосточная математика представляет собой сово-купность определенных правил вычисления; то обстоятельство, что древние египтяне и вавилоняне могли осуществлять весьма сложные вычислительные операции, ничего не меняет в общем характере их математики.
Эти особенности древневосточной математики объясняются тем, что она но-сила практически-прикладной характер; с помощью арифметики египетские писцы решали задачи "о расчете заработной платы, о хлебе или пиве и т.д.", а с помощью геометрии вычисляли площади или объемы. В обоих случаях вычислитель должен был знать правила, по которым следовало производить вычисление.
В этом отношении характерны специальные тексты, предназначенные для писцов, занимавшихся решением математических задач. Писцы должны были знать все численные "коэффициенты", нужные им для вычислений. В списках "коэффициентов" содержатся "коэффициенты" для "кирпичей", для "стен", затем для "треугольника", для "сегмента круга", далее для "меди", "серебра", "золота", для "грузового судна", для "диагонали" и т.д. Очень важной задачей математики был расчет календаря, поскольку календарь использовался для определения сро-ков сельскохозяйственных работ и религиозных праздников.
Надо отметить, что в Древней Греции так же, как и в Вавилоне и Египте, разрабатывалась техника вычислений, без которой невозможно было решать практические задачи строительства, военного дела, торговли, мореходства и т.д. Но важно иметь в виду, что сами греки называли приемы вычислительной арифметики и алгебры логистикой (logistika - счетное искусство, техника счисления) и отличали логистику как искусство вычисления от теоретической математики. Правила вычислений разрабатывались в Греции точно так же, как и на Вос-токе, и, конечно, греки при этом могли заимствовать очень многое как у египтян, так и у вавилонян.
О логистике греков, как и о математических вычислениях на Востоке, можно сказать, что она носила практически-прикладной характер. В состав логистики входили: счет, арифметические действия с целыми числами вплоть до из-влечения квадратных и кубических корней, действия на счетном приборе — абаке, операции с дробями и приемы численного решения задач на уравнения пер-вой и второй степени. В логистике рассматривались также приложения арифме-тики к землемерию и иным задачам повседневной жизни. Сами греки отличали логистику от теоретической арифметики, которую они называли просто арифметикой. Правила логистики излагались догматически и, вообще говоря, не снаб-жались доказательствами так же, как это было принято в египетских папирусах.
Таким образом, в Греции имела место как практически-прикладная матема-тика (искусство счисления), сходная с египетской и вавилонской, так и теоретическая математика, предполагавшая систематическую связь математических высказываний, строгий переход от одного предложения к другому с помощью доказательства. Именно математика как систематическая теория была впервые создана в Греции.
Надо полагать, что становление математики как систематической теории, представляло собой длительный процесс: от первых греческих математиков (ко-нец VI-V в. до н.э.) до III в. до н.э., прошло более двухсот лет бурного развития греческой науки. Однако уже у ранних пифагорейцев, т.е. на первых этапах становления греческой математики, мы можем обнаружить такие специфические особенности, которые принципиально отличают их подход к математике от древневосточного.
Прежде всего такой особенностью является новое понимание смысла и цели математического знания, иное понимание числа: с помощью числа пифагорейцы не просто решают практические задачи, а хотят объяснить природу всего сущего. Они стремятся поэтому постигнуть сущность чисел и числовых отношений, ибо через нее надеются понять сущность мироздания. Так возникает первая в истории попытка осмыслить число как миросозидающий и смыслообразующий элемент.
То, что у вавилонян и египтян выступало всего лишь как средство, пифагорейцы превратили в специальный предмет исследования, т.е. в цель последнего.
Пифагорейцы первыми возвысили математику до ранее неведомого ей ранга: числа и числовые отношения они стали рассматривать как ключ к пониманию вселенной и ее структуры. Они впервые пришли к убеждению, что "книга природы написана на языке математики".
Нет ничего удивительного в том, что мыслители, впервые попытавшиеся не просто технически оперировать с числами (т.е. вычислять), но понять саму сущность числа, сущность множества и характер отношений различных множеств друг к другу, решали эту задачу первоначально в форме объяснения всей структуры мироздания с помощью числа как первоначала.
Прежде чем появилась математика как теоретическая система, возникло учение о числе как некотором божественном начале мира, и это, казалось бы, не математическое, а философско-теоретическое учение сыграло роль посредника между древней восточной математикой как собранием образцов для решения отдельных практических задач и древнегреческой математикой как системой положений, строго связанных между собой с помощью доказательства.
http://univer.webkurer.ru/articles/category/67/message/674

Категория: Статьи | Добавил: Roza (20.03.2011)
Просмотров: 750 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
Музыка
Радио
Форма входа
Наш опрос
Оцените мой сайт
Всего ответов: 128
Мини-чат
Мини чат
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Поиск